

Fraunhofer Institute for Process Engineering and Packaging IVV

Macauba (*Acrocomia aculeata*) pulp cell wall polysaccharides: Fractionation and evaluation of functional and rheological properties

8th international conference on Dietary Fibre 2022 October 17th, 2022

Sérgio H. Toledo e Silva^{1,2}, L. B. Silva³, S. Bader-Mittermaier¹, P. Eisner^{1,2}

¹Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany

²Technical University of Munich (TUM), TUM School of Life Sciences Weihenstephan, Freising, Germany

³Fraunhofer Innovation Platform for New Food Systems at Ital, Campinas, Brazil

Macauba Palm

- Macauba palm is a tropical palm tree native to South America¹
- Macauba palm is a promising energy crop:
 - High oil productivity: 2.5 5.0 tons of oil/hectare/year¹
 - Integrated crop-livestock and forest-farming systems²
 - Does not compete with rainforest for land^{1,2}
 - In Brazil, extensive native palm tree reservations can be found nationwide²
 - First commercial initiatives started in the past decade¹

Macauba Fruits

The fruits are composed of five fractions

- Pulp and kernel are the main fractions of industrial interest due to a high oil content
- High potential as a multipurpose crop, with high potential for the simultaneous production of oil, proteins, and dietary fibers

Data from [3-5]

^{4 –} Sanjinez-Argandoña & Chuba, Rev. Bras. Fruct. 2011; 33: 1023.

^{5 –} Lescano et al., African Journal of Food Science. 2015; 9: 113.

Composition of Macauba De-oiled Pulp Meal

MESOCARP (PULP)

Component	Content (% DM)
Oil	0.9
Ash	6.2
Protein	5.9
Starch	15.1
Soluble dietary fibers	17.7
Insoluble dietary fibers	23.1
Carbohydrates	31.1

40.1% Total dietary fiber

Potential new source for sustainable and healthy food ingredients

Objectives

Fractionation and isolation of Macauba Cell Wall **Polysaccharides (CWP)**

Evaluate the rheological and functional properties of macauba **CWP**

Assess the potential of CWP fractions as food ingredients

© Fraunhofer IVV

Fractionation of Macauba Macauba pulp meal Extraction with 80% (v/v) Ethanol **Cell Wall Polysaccharides** Alcohol insoluble residue Water Water soluble fraction Residue Galactoglucomannas and water soluble pectins NaOH 50 mmol/L; EDTA 0.5 mmol/L **Calcium chelator-soluble fraction** Residue Calcium bound pectins 1 mol/L KOH highly branched pectic polysaccharides **Losely bound hemicelluloses** Residue Glycoproteins, water insoluble β-glucans, 4 mol/L KOH arabinoxylans, glucuronoarabinoxylans, highly branched xyloglucans Slightly branched xyloglucans Strongly bound hemicelluloses Insoluble residue Cellulose and Lignin

Yield of Macauba Polysaccharide Fractions

Polysaccharide fraction	Relative content (%)			
	Macauba	Apple ⁶	Olive ⁷	Tomato ⁸
Water soluble fraction	21.8 ± 0.8^{c}	5.6	Not reported	5.1
Calcium chelator-soluble fraction	4.1 ± 0.3^{e}	4.4	17.4	38.6
Loosely bound hemicelluloses	27.6 ± 0.3 ^b	Not reported	10.5	24.1
Strongly bound hemicelluloses	7.3 ± 0.2^{d}	16.8	4.9	29.1
Cellulose and lignin (insoluble residue)	39.2 ± 0.4 ^a	35.6	Not reported	Not reported

- High content of water soluble polysaccharides
- Main fractions: water-soluble, loosely bound hemicelluloses and cellulose and lignin

^{7 –} Coimbra et al. Carbohydrate Research. 1994; 252, 245-262.

^{8 –} Li et al. Carbohydrate polymers. 2019; 219, 181-190.

Functionality of Macauba Polysaccharide Fractions

Polysaccharide fraction	Water binding capacity (mL/g DM)	Oil binding capacity (mL/g DM)
Water soluble fraction	ND	1.2 ± 0.1 ^b
Calcium chelator-soluble fraction	1.4 ± 0.3 ^c	1.4 ± 0.1 ^b
Loosely bound hemicelluloses	4.6 ± 0.2 ^b	1.1 ± 0.3 ^b
Strongly bound hemicelluloses	8.8 ± 0.3 ^a	1.1 ± 0.2 ^b
Cellulose and lignin (insoluble residue)	8.8± 0.1 ^a	8.2 ± 0.3 ^a

- Variability in functionality of polysaccharide fractions:
 - Difference in chemical composition and molecular structure
 - Wide range of possible applications
- Functionality within the range of other sources of dietary fiber

Rice bran dietary fiber⁹:

WBC: 4.9 mL/g OBC: 4.5 mL/g

Orange alcohol insoluble residue¹⁰

WBC: 15.5 mL/g OBC: 5.1 mL/g

Tomato peel fiber¹¹

WBC: 6.8 mL/g OBC: 1.5 mL/g

Rheological Properties of Macauba Polysaccharide Fractions

Flow Behavior of the Water Soluble Fraction

• 5 g/L • 10 g/L • 25 g/L • 50 g/L • Locust bean gum 10 g/L

Water soluble fraction

- Shear thinning behavior
- 1000-fold increase in viscosity with concentration from 5 to 50 g/L
- Similar profile as Locust bean gum
- High potential as food hydrocolloid

Rheological Properties of Macauba Polysaccharide Fractions

Viscoelastic properties: Water-soluble, loosely bound hemicellulose, cellulose and lignin at 50 g/L

- Water soluble fraction: dilute viscous solution
- Loosely bound hemicellulose: Weak gel
- Cellulose and lignin fraction: gel behavior

Water soluble fraction Loosely bound hemicelluloses Cellulose and lignin

Rheological Properties of Macauba Polysaccharide Fractions

- Isolated fractions presented distinct functional and rheological behavior:
 - Influenced by composition and molecular properties of the polysaccharides

Potential applications

- Water soluble fraction: thickening agent
- Loosely bound hemicellulose: stabilizer, products requiring moderate water binding capacity
- <u>Cellulose and lignin fraction</u>: stabilizer, products requiring high water and oil binding capacities
- Prevention phase separation and improve freeze-thaw behavior: ice creams, dairy desserts, ready-to-eat meals

Conclusions and Outlook

- Macauba is a novel source for innovative, sustainable and functional dietary fibers.
- Characterization of cell wall polysaccharides provided insightful information about the chemical composition and economic potential of side streams from agro-industries.
- Our results provide a framework for the downstream fractionation of Macauba pulp dietary fibers and future exploitation as a food ingredient.
- The compositional and molecular characterization of the isolated polysaccharide fractions can elucidate the difference in functionality and rheological properties (currently under investigation).

Acknowledgment

This research was financially supported by the German Federal Ministry of Education and Research (BMBF) under the program Bioeconomy International [Grant No. 031B0282].

Fraunhofer Institute for Process Engineering and Packaging IVV

Thank you for your attention

Fraunhofer Institute for Process Engineering and Packaging IVV

Contact

Sérgio Henrique de Toledo e Silva Food Process Development Tel. + 49 8161 491-422 sergio.toledo@ivv.fraunhofer.de

Fraunhofer Institute for Process Engineering and Packaging IVV Giggenhauser Str. 35 85354 Freising, Germany www.ivv.fraunhofer.de

References

- 1. Colombo et al. Macauba: a promising tropical palm for the production of vegetable oil. Oil Seed & Fats Crops and Lipids. 2017; 25(1); D108.
- 2. Cardoso, A. et al. Opportunities and challenges for sustainable production of A. aculeata through agroforestry systems. Industrial Crops and Products. 2017; 107, 573-580.
- 3. Pires et al. Ecophysiological traits of the Macauba palm: a contribution towards the domestication of a novel oil crop. Ind. Crops Prod. 2013; 44: 200-210.
- 4. Sanjinez-Argandoña & Chuba. Biometrical, physical and chemical characterization of bocaiuva (*Acrocomia aculeata* (jacq. Lodd. Ex Mart) palm fruits. Rev. Bras. Fruct. 2011; 33: 1023-1028.
- 5. Lescano et al. Nutrients content, characterization and oil extraction from *Acrocomia aculeata* (Jacq.) Lodd. fruits. African Journal of Food Science. 2015; 9: 113-119.
- 6. Fügel, R., Carle, R., & Schieber, A. A novel approach to quality and authenticity control of fruit products using fractionation and characterisation of cell wall polysaccharides. Food Chemistry. 2004; 87(1), 141-150.

References

- 7. Coimbra, M. A. et al. Isolation and characterisation of cell wall polymers from olive pulp (Olea europaea L.). Carbohydrate Research. 1994; 252, 245-262.
- 8. Li, Q. et al. Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydrate polymers. 2019; 219, 181-190.
- 9. Abdul-Hamid, A., & Luan, Y. S. Functional properties of dietary fibre prepared from defatted rice bran. Food chemistry. 2000; 68(1), 15-19.
- 10. Chau, C. F., & Huang, Y. L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. Journal of agricultural and food chemistry. 2003; 51(9), 2615-2618.
- 11. Navarro-González et al. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Research International. 2011; 44, 1528–1535.

